
Using tcpwrappers to save your system

(and your bacon).

Dillon Pyron, CISSP
NETSerenity, Inc.

dillon@netserenity.net

Security Concepts
Security for any networked system must be viewed as an onion (time worn analogy, but
appropriate). Rather than peeling back the layers, however, consider how many layers
you must get through to reach the middle. By imposing properly designed and
maintained layers of protection between “the bad guys” and your sensitive data, you can
afford yourself a cascade of defense. This is called “defense-in-depth”.

Defense-In-Depth
The defense in depth concept revolves around what can be viewed as a stack (the ISO
model comes to mind) or a series of concentric rings, with your data or other assets
protected from the attackers. And example of this view is shown below. Notice the

progressive nature of the protection in the event a previous level fails. An environment
that does not employ defense-in-depth, or that does not deploy it properly, can expose
itself to severe danger in the event that a layer previously considered “adequate” should
fail. Such a system is frequently referred to as egg-like (hard shell, soft interior) or
“crunchy on the outside, chewy on the inside”.

Perimeter
Perimeter defenses are firewalls and similar enterprise wide technical assets. These must
be scaled to address the broadest spectrum of both internal requirements and external
threats. Typically, perimeter defenses receive the largest portion of the investment in

Data & Resources

Application Defenses

Host Defenses

Network Defenses

Perimeter Defenses

As
su

m
e

Pr
io

r L
ay

er
s

Fa
il

time and money, because of their outward facing nature and the emphasis on stopping
external attackers.

Network
A network level defense is positioned inside of the primary firewall. It can consist of
resources such as routers with access control lists (ACL’s), which are also frequently
seen on perimeters. A network defense most frequently utilizes sensors that detect either
known attack signatures or anomalous network conditions, or both. Vendors provide
different options on how to address the attacks, with most providing some level of
tailoring. The options can range from simple logging, to breaking the connection to
activation of custom scripts. Care must be taken, to avoid overwhelming the sensors and
consoles with either inconsequential events or false positives.

Host
A host-based IDS is designed to detect and (hopefully) respond on attacks directed at a
specific host. Typically, this is a software system running on the host that is protected,
although inline, hardware solutions are also present. These hardware solutions, however,
are costly and may be difficult to manage. As a result, software is the usual route taken.

Introduction to tcpwrappers
Tcpwrappers was originally developed by Weiste Venema as a means to identify, track
and deal with attacks on his systems. Over the years, it has expanded in both scope and
capabilities to its present status as one of the most widely used host-based IDS systems.

Tcpwrappers uses facilities already present in all Unix® and Linux® variants. It uses
inetd to trap and syslogd to report and record activity. It will also use In fact, the daemon
tcpd is frequently also available. However, I would recommend going to
ftp://ftp.porcupine.org/pub/security to download the latest release. Make the daemon and
install it in /usr/sbin.

Tcpwrappers work by interposing themselves between “the world” and a server
application. For instance, a wrapper might be placed between a telnet user and the telnet
daemon. However, this wrapper only exists for a short period of time. Once the initial
connection is made between the client and the server (application), the wrapper is no
longer involved.

The wrapper works by identifying the intended transaction and using a lookup table
(provided by you) to determine the action(s) to be taken. The flexibility of this plan
allows a system to allow or deny connections from certain users or locations, to log
connection requests or to take other, specialized actions. As seen below, the options are
almost limitless.

To put the wrappers into action, you will need to make minor modifications to
/etc/inetd.conf. As an example:

ftp://ftp.porcupine.org/pub/security

telnet stream tcp nowait root /usr/sbin/in.telnetd
ftp stream tcp nowait root /usr/sbin/in.ftpd

becomes:
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd

What happens here is that /usr/sbin/tcpd is called by inetd in place of the usual daemon.
It is called with the argument of the daemon that will be used. When tcpd is started, it
starts with the name provided as this argument. When it performs its processing and
determines that the daemon should be started (this may not always be the case), the
daemon provided by the argument is started.

Now, how does this “in between” daemon determine whether the ultimate daemon should
be started? Two simple files are used. The format for both /etc/hosts.allow and
/etc/hosts.deny are identical. Each contains a service and a hostlist that will be
allowed/denied, as appropriate. The format is of the form
service:hostlist:action. The default for each is the keyword ALL. In fact,
in the absence of a file ALL:ALL:ALLOW is used. In the event both files exist,
hosts.allow is read first and overrides entries in hosts.deny. We can tell our
server to refuse access to anyone using hosts.deny and allow access to specific hosts
via hosts.allow.

The action option can be as simple as an allow or deny, or a complicated action to log or
take some other action. In addition to the action here, alternative daemons can be started.
For instance, if you have no use for telnet (and you shouldn’t), why not write a little
“daemon” that spoofs the actions of telnetd, but never lets the person actually login, even
with a correct username/password combination (nasty piece of work).

Examples
Now that we know how it works, lets look at how to make it work. In this example, we’ll
allow only one host access via ftp, nobody gets telnet, only our internal network gets ssh
and we’ll do some special logging with finger. First step (recommended) is to download
the current version of the daemon, make it and move it to /usr/sbin. Next, we need to
modify /etc/inetd.conf to handle the new daemon.

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/ftpd
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/telnetd.in
ssh stream tcp nowait root /usr/sbin/tcpd /usr/sbin/sshd
finger stream tcp nowait root /usr/sbin/tcpd /usr/sbin/fingerd

At this point, we create the file /etc/hosts.allow and /etc/hosts.deny.

First, in hosts.allow we put the following lines in.

ftp: 192.168.1.101: ALLOW
ssh: 192.168.1.*: ALLOW

Hosts.deny will look like this.

fingerd: ALL: spawn (echo Finger attempt from %h %a on `date`
|/var/log/tcp.deny.log
ALL:ALL

Notice the “catch all” ALL:ALL at the end of the file. Anything not specifically
allowed will be denied. The entry for finger will spawn a process that makes an entry
into the logfile tcp.deny.log, which you should be checking periodically.

HP-UX and inetd.sec
HP has developed a form of tcpwrappers for HP-UX. It uses a single file and requires no
changes to inetd.conf. However, it lacks flexibility in that the only actions available are
to either allow or deny access to the service. In most cases, however, this is adequate to
provide that extra bit of security.

In place of /etc/hosts.allow and /etc/hosts.deny, the file /usr/adm/inetd.sec is used.
Whenever inetd is invoked, it searches for the file. If it exists, then the file is searched
for the service and the action to be taken is performed if the service is in the file.

The format of the file is similar to the /etc/hosts.* files.

<service name> <allow|deny> <host/net addresses, host/net names>

Examples
In this quick example, we will let anyone on the internal network get in via ssh, deny
finger access to everyone and allow ftp access from only one machine.

#give our internal people ssh access
ssh allow 192.168.1.*
#deny finger to everybody
fingerd deny *
#ftp only from my machine (greedy :-)
ftp allow 192.168.1.101

Simple, although not as flexible.

	Using tcpwrappers to save your system
	(and your bacon).
	
	Dillon Pyron, CISSP

	Security Concepts
	Defense-In-Depth
	Perimeter
	Network
	Host

	Introduction to tcpwrappers
	Examples
	HP-UX and inetd.sec
	Examples

