
Configuring the Software 
Development Process on Linux

Arthur Hicken
Parasoft Corporation

ahicken@parasoft.com



Why Modify Your Development 
Process?

• Current industry trends are forcing 
companies to turn out applications in 2-
3 months

• If you don’t have an effective 
development process, you will not 
survive



Goals of This Presentation
1. Demonstrate the necessity of configuring a 

development process that effectively 
prevents errors

2. Describe what such a development process 
should look like

3. Discuss how tools fit into this development
process

– Describe what commercial and public domain 
tools help you perform each step or assess 
readiness to progress,

– Explain how to effectively configure public 
domain tools



Error Prevention

• Errors are not inevitable
• Errors occur because of bad coding and 

development practices 
• Examples in C++ and Java
• Preventing errors results in a higher-

quality product than introducing errors, 
then trying to find and remove them



Example 1
IBM Study
“Projects that aim from the beginning at achieving the 

shortest possible schedules regardless of quality 
considerations tend to have fairly high frequencies 
of both schedule and cost overruns. Software 
projects that aim initially at achieving the highest 
possible levels of quality and reliability tend to have 
the best schedule adherence records, the highest 
productivity, and even the best marketplace 
success.”*

* Jones, Capers. Programming Productivity. New York: McGraw-Hill, 1986.



Example 2
• W. Edwards Deming: Use statistical quality control to 

build quality into product-- implement a process that 
prevents errors, rather than focus on the product itself 
(Total Quality Control)

• In the 1970s, American auto manufacturers’ failure to 
focus on process and error prevention prevented 
them from improving product quality
– They assumed defects were inevitable and did 

not try to stop causing defects
– Instead, they tried to remove existing defects
– Manufacturers failed to significantly reduce the 

number of product defects



Development Process

• Customers
• Development teams
• Methodology
• Practices
• Tools



Methodologies

• Waterfall
• Spiral
• RAD
• eXtreme programming



Practices
• Certain practices are universally 

acknowledged as beneficial, regardless of 
development methodology

• Code construction
– Coding standards, code reviews, unit and 

application testing
– Debugging support: firewalls, debugging 

information and debugging methods
• Source monitoring

– Source control, automated and regular builds, bug 
tracking, automatic error detection, metrics



Coding Standards

• Standard code formatting
• Standard coding constructs

– Beyond syntactically permissible
– Standardized practices

• Coding standards promote…
– A reduced chance of introducing defects
– A reduced chance that defects will go unnoticed 

during code review
– Enhanced communication through the code
– Increased efficiency



Source Control
• Central repository for the entire source base
• Provide a record of the evolution of the 

source base
– Who, when, why

• Reduce the risk of change
– Recovering older, more stable version
– Cheaper to try different approaches

• Facilitate group access to a common source 
base
– Network, remote access

• Source tagging
– Named collection of sources



Automated Builds

• Minimize the overhead in assembling 
the application pieces

• Identify certain classes of interface 
errors

• Promote frequent builds of the entire 
application

• Provide the basis for automated regular 
testing at the application level



Unit Testing

• Write the test before the code!
• Use the tests to document the behavior of the 

object
• Guaranteed maintenance of the test suite 

along with the code
• Thoroughly test the entire publicly accessible 

interface
• Test the boundary conditions

– Out of range arguments, typos, NULL objects, 
numbers that are too big or too small



Unit Testing - Continued

• Unit testing provides…
– Increased confidence that the unit is performing as 

expected
– Continuous assessment of the quality of the code
– Early detection of incompatible changes

• Helps minimize the risk of change by 
providing a means of verifying correctness 
and detecting fault



Application Testing

• Functional tests document the expected 
application behavior

• Necessary for assessing…
– Overall application behavior
– Unit integration
– Performance
– Resource requirements



Regression Tests
• Non-trivial applications have non-local 

defects
• Repairing a defect sometimes disturbs a 

sizeable portion of the system
• Regression tests…

– Provide a warning system against non-local 
defects

– Shield against poor understanding of application 
behavior by the maintainer

• A defect is not repaired until a test case that 
detects its presence is placed in the 
regression test suite



Additional Testing

• In-house testing
• Beta cycles
• Release candidates



Bug Tracking

• Ensure appropriate people are notified 
of problems

• Facilitate bug reporting
• Correlate bugs to source versions
• Facilitate tracking of individual problems
• Defect counts and defect rates are 

fundamental quality metrics



Code Reviews

• Promote collective ownership of the 
code

• Distribute the knowledge about the 
implementation details to the team

• Allow more experienced developers to 
share know-how

• Most importantly, code reviews are a 
very effective way to detect defects



Debugging Support

• Add logic for pre-conditions and post-
conditions

• Retain the code fragments used to exercise 
the code during debugging sessions

• Write routines specifically for use during 
debugging
– Expensive data structure validations
– Multi-object interrelations
– Detailed examination of memory owned by an 

object



Automatic Error Detection

• Simplest way to detect defects
• Works well with automatic application 

builds and test suites
• Some tools can generate test cases 

automatically



Coverage Analysis

• Measures the fraction of the application 
code that has been exercised

• Uncovers certain types of defects
• Provides a metric of the thoroughness 

of test suites



Development Tools for Linux

• Free
• Commercial



Version Control

• CVS
– Download from www.cyclic.com

• Present in most Linux distributions
• Reads and writes a standard file format



GNATS

• Download from 
http://sources.redhat.com/

• Installation requirements:
• Root access
• GNU m4 installed

• Easily customizable
• Integration with emacs



Bugzilla

• Download from 
http://www.mozilla.org/projects/bugzilla/

• Web-enabled



Unit Testing Tools

Types of tools available:
• Integrated
• Task-specific
• Perform black-box, white-box and/or 

regression testing
• Various degrees of automation



Unit Testing Tools 

Look at:
– Ease of use
– Degree of automation

• Builds harness automatically
• Creates test cases automatically
• Automatically generates stubs

– Customizability
– Variety of tests performed
– Coverage of automatic tests



Automatic Runtime Error 
Detection Tools

Look at:
– Technology that drives the error detection
– Number and types of errors found
– Ability to detect errors in threads
– Precision of error messages
– Memory areas in which it finds errors



ElectricFence

• Available in most Linux distributions
• Detects two kinds of dynamic memory 

misuses:
– Out-of-bounds accesses
– Accesses to de-allocated memory



Memory Profiling Tools

Look at:
– Types of reports available
– Real-time profiling



Coverage Analysis Tools

Look at:
– Testing method (by block or by line)
– How it works with your other tools



Conclusions

• Survival requires a development process that 
promotes shipping reliable applications as 
rapidly as possible

• Tools– both freely available and commercial–
are critical to maintaining such a development 
process 

• As the confidence of tool vendors in Linux 
increases, more specialized development 
tools should become available


