
1

hp education services
education.hp.com

hp education services
education.hp.com

HP W orld/Interex 2002
Linux BASH

Shell Programming

Chris Cooper
(734) 805-2172

chris_cooper@hp.com

George Vish II
(404) 648-6403

george_vish @ hp.com

2

hp education services
education.hp.com

hp education services
education.hp.com

BASH
the Bourne AgainShell

A brief overview

Version A.00

U2794S Module 8 Slides

3 © 2002 Hewlett-Packard CompanyU2794S A.00

Linux
Kernel
v2.x.x

Hardware

The Linux Kernel

•The kernel interacts with low-level system features.

•The kernel is responsible for
– device drivers
– memory management
– CPU scheduling
– implementation of the file system

•The kernel is Linux. This is the only part of the system
controlled by Linus Torvalds.

4 © 2002 Hewlett-Packard CompanyU2794S A.00

The Shell

• The shell acts as an intermediary between the user and the kernel.

• The shell interprets user commands

 and passes them to the kernel.

• Many shells are available for Linux; the

 default is the Bourne-Again SHell, bash.

Hardware

bash

vmlinux

5 © 2002 Hewlett-Packard CompanyU2794S A.00

Available Shells

There are five major shell environments, although others are available:

sh The Bourne shell is the the original UNIX shell,
written by Steven Bourne.

csh The C (California) shell is a shell with syntax similar
to the C programming language.

ksh The Korn shell is the most widely used commercial
Unix shell, derived largely from the Bourne shell.

POSIX sh A standardized version of the Korn shell (and the default

shell for the HP-UX operating system release since 10.x)

bash The Bourne-again shell is the default for Linux,
GNU alternative to the Korn shell, with extended features.

6 © 2002 Hewlett-Packard CompanyU2794S A.00

Using the bash Shell

• The shell is a non-graphical environment providing a command line
interpreter as well as a script execution environment.

• Shell commands are entered at the command prompt, which can be
accessed through a non-graphical login, or a graphical terminal emulator,
such as an X-term or the Gnome terminal.

• The shell has a set of built-in commands with terse syntax.

• Extra commands may be written and utilized like built-in shell
commands.

7 © 2002 Hewlett-Packard CompanyU2794S A.00

Variables

• Values can be stored by the shell in variables.

• Variables can be set by

– assigning a value directly
myvar=hello

– assigning the output of a command to a variable
(command expansion)

myvar='ls’ or myvar=$(ls -a)
• The value stored in a variable can be accessed with the dollar symbol

($).
$myvar

• The echo command can be used to display text, including the contents
of variables.

echo $myvar

8 © 2002 Hewlett-Packard CompanyU2794S A.00

Using Variables

• Variables in the shell are not strongly typed. For example, a variable
containing the value 23 may be either be treated as the number 23 or as
the string “23”.

• To perform numeric addition:

variable3=$((variable1 + variable2))

• To perform string concatenation:

variable1=$variable2$variable3

9 © 2002 Hewlett-Packard CompanyU2794S A.00

Environment Variables

• The shell maintains a set of variables that can be accessed by the shell
and by programs that run in it. These variables are part of the shell
environment and are called environment variables.

• Currently set environment variables can be viewed with the env
command.

• To modify an environment variable or add a new variable to the
environment, it must be exported.

PATH=$PATH:/usr/newbin
export PATH

10 © 2002 Hewlett-Packard CompanyU2794S A.00

Streams (I/O redirection)
• Input from and output to the terminal is handled through an I/O stream.

Streams are treated like files by the shell.

• The default input and output streams are

stdin The standard input stream (file descriptor 0)

stdout The standard output stream (file descriptor 1)

stderr Error output from commands (file descriptor 2)

• The output from or input to commands can be redirected to other commands or files.

> filename Redirect to a file.

>> filename Append to a file.

< filename Redirect file contents to a command.

| Pipe command output to the input of another command.

• The pipe (}) is a very powerful tool, as it allows the creationof sophisticated commands
from the basic building blocks. For example:

head -1000 myfile | tail -150 | more

• The 2>redirection operator can be used to direct command errors to a different location,
such as an error log file, or to discard error messages completely.

some-command 2> errors

some-other-command 2> /dev/null

11 © 2002 Hewlett-Packard CompanyU2794S A.00

Aliases

• Aliases can be used as shortcuts for commonly used complex commands.
The shortened alias is replaced with its full text when it appears at the start of
a command line.

– Current aliases may be displayed by entering: # alias
– To create an alias: # alias more=more
– An alias may be cancelled with: # unalias <alias-name>

• RedHat Linux aliases rm, cp, and mvto their interactive modes for root,
always to prompting when a file is to be destroyed.

• Local user aliases may be defined in the $HOME/.bashrc file
(Globally used aliases may be defined in /etc/bashrc)

12 © 2002 Hewlett-Packard CompanyU2794S A.00

Process Control

• When a command is run, it may start several processes. All the currently
running processes can be viewed with the ps (or the bash shell built
in jobs command).

• Processes can run in the foreground or background:

& Run the command in the background.

^C Terminate the current foreground process.

^Z Suspend the current foreground process.

bg Move suspended foreground processes to the background.

fg Move the background jobs into the foreground.

13 © 2002 Hewlett-Packard CompanyU2794S A.00

Resource Files

• Every user has a set of resource scripts in their home directorythat
allows per-user configuration of the Linux environment.

• User resource files are located in the home directory. The namesof these
files usually begins with a period (.) character.

.bash_profile Executes once at login.

.bashrc Executes every time a shell is started.

.bash_logout Executes when a shell is closed.

.bash_history A list of recently entered commands.

14 © 2002 Hewlett-Packard CompanyU2794S A.00

Shell Scripts

• Shell scripts are widely used in the UNIX environment
to:
– Maintain and monitor the system
– Simplify complex processes
– Grant restricted permissions to ordinary users
– Configure the user login procedure and environment

• Shell scripts use the same syntax as the
command line and can call any executable program,
including shell commands, scripts, and applications.

15 © 2002 Hewlett-Packard CompanyU2794S A.00

Writing Shell Scripts

• Shell scripts should begin with a line that defines which interpreter to
use for the script.

#!/bin/bash (this must be on the very first line of the file)
• Comments are added with the hash (#) character. Everything to the right

of the # is ignored.

• Commands are run in order from the top to the bottom of the file.

• Shell scripts include commands for flow control allowing conditional
execution and looping.

• The shell is not a high performance programming language, it is
intended as a glue for the built in shell commands and other user or
third-party created applications.

16 © 2002 Hewlett-Packard CompanyU2794S A.00

Conditional

• Commands contained within an if statement will only be executed if
the condition is met.

if [condition]
then

..

elif [condition]
then

..

fi

• Case statements are a convenient way of expressing actions to handle a
list of possible variable values.

17 © 2002 Hewlett-Packard CompanyU2794S A.00

Comparing Variables

• Two sets of comparison operators exist for comparing strings or
numbers.

String Test Numerical Test

= -eq Equals

!= -ne Not equal to

> -gt Greater than

< -lt Less than

>= -ge Greater than or equal to

<= -le Less than or equal to

18 © 2002 Hewlett-Packard CompanyU2794S A.00

File Testing

• Several conditions exist to test the status of files.

-e <filename> File exists

-d <filename> File is a directory

-f <filename> File is an ordinary file

-w <filename> File is writable

-x <filename> File is executable

19 © 2002 Hewlett-Packard CompanyU2794S A.00

Loops

• whileloops repeat as long as the condition is true.
while [condition]
do

..

done
• forloops repeat for every value in a list.

for instance in $list
do

..

done

20 © 2002 Hewlett-Packard CompanyU2794S A.00

Reading User Input

• User input is collected one line at a time using the read command.
read line

• Files can also be read a line at a time using a combination of the while
and read commands.
while read line
do

..

Done < $file

• When the end of file marker is reached, read will return false.
If user input spans multiple lines, it can be terminated with the
Ctrl+ d character.

21 © 2002 Hewlett-Packard CompanyU2794S A.00

Processing Arguments

• The shift command moves all arguments to the left, discarding the
first argument.

• The getopts command is useful for processing UNIX style command
flags.

$1 $2

bananas pears peaches

$@ $# = 4

apples# fruit

22 © 2002 Hewlett-Packard CompanyU2794S A.00

Scripting Tips

• Always attempt to re-use existing programs and scripts whenever
possible.

• Do not try to improve on the efficiency of shell commands.

• Try commands on the command line first.

• When first writing scripts, use the echo command to display the
contents of variables instead of running commands that will modify the
system state.

• When tracking errors, use echoto track the flow of execution and #to
deactivate suspect portions of code.

• Solve interesting problems. Practice and have fun!

23

hp education services
education.hp.com

hp education services
education.hp.com

M anaging
Input and Output

Version A.02

H4322S Module 13 Slides

24 © 2002 Hewlett-Packard CompanyU2794S A.00

Managing Input/Output

This module covers methods of handling input and output in shellscript
programs.

The shell provides several methods to direct the flow of data into and out
of command programs:

• Redirection of input command < data_file
• Redirection of output command > data_file
• Redirection of input text command << end_file_marker
• Piping of output command | next_command
• Redirection of errors command 2> error_file
• Run in background command &

25 © 2002 Hewlett-Packard CompanyU2794S A.00

Data-Flow File Descriptors 3-9

Standard file descriptors: stdin (0) stdout (1) stderr (2)
File descriptors 3to 9can be used for input or output

Syntax:

• Open file for reading exec 3< data_file
• Open file for write/overwrite exec 3> data_file
• Open file for write/append exec 3>> data file
• Redirection of output command >&3
• Close input file descriptor exec 3<&-
• Close output file descriptor exec 3>&-

26 © 2002 Hewlett-Packard CompanyU2794S A.00

Reading/Writing Using File Descriptors

exec 3> /tmp/output.txt Open

print -u3 "some data" Use(write)

exec 3>&- Close

exec 3< /tmp/output.txt Open

read -u3 var Use(read)

exec 3<&- Close

27 © 2002 Hewlett-Packard CompanyU2794S A.00

Passing File Contents to a Script

command | script

script < data_file

text_line
text_line
text_line
text_line
text_line
text_line while read var

28 © 2002 Hewlett-Packard CompanyU2794S A.00

Redirecting to a Loop within a Script

Piping Data to a Loop Redirecting Data to a Loop

command | while read var while read var
do do
... ...
command_set command_set

... ...
done done < data_file

Data is piped into the loop. Data is redirected into the

The command must create stdout. loop following the word done.

29 © 2002 Hewlett-Packard CompanyU2794S A.00

Thesetcommand is used to generate a parameter list.

Input lines are, conventionally, read into a variable calledline.

Input line: list of words

while read line

set $line

Creating Parameter Lists from Input Lines

list of words

list of words
$1 $2 $3

30 © 2002 Hewlett-Packard CompanyU2794S A.00

Using a here Document

command <<
line 1
line 2
line 3
line 4
EOF

