

Porting Applications from Tru64 UNIX® to HP-UX 11i

Peter Sward

Technical Engineering and Consulting Group

"Oh God, George! Stop! ... Stop the car! I've got another migration headache!"

Agenda

- Tru64 UNIX and HP-UX 11i Migration Scenario and Roadmaps
- Comparison of Tru64 UNIX and HP-UX Development Environments
- Transition Tools and Resources

UNIX® ISV Migration Scenario

Large overlap of applications on Tru64 UNIX® on AlphaServer and HP-UX on PA-RISC today

Ports to HP-UX on Itanium® are in process. Portfolio is growing, and HP is focused on Itanium® application availability
ISVs that are only on AlphaServer are in vertical segments, and HP is committed to migration with these partners

Tru64 UNIX® V5.1B and its updates

V5.1B, with its enhancements, will be supported for at least 5 years beyond last sale date of AlphaServer systems

V5.1B-1"Vail" 2003

- Scaling to 64 CPUs
- Continued leadership storage SAN support
- Resiliency enhancements
- Enhanced availability and disaster tolerance
- Migration tools availability

V5.1B-2"Utah" 2004

- Support EV7z
 AlphaServers
- Improved storage management and new storage options
- Resiliency enhancements
- HP-UX 11i compatibility tools

Maintain binary compatibility, Continue focus on quality and stability.

HP-UX 11i and Tru64 UNIX® roadmap

Tru64 UNIX and HP-UX Comparison

- HP-UX is based on System V with features from 4.x BSD
- Tru64 UNIX environment is based on 4.x BSD with features from System V
- HP-UX and Tru64 UNIX conform to multiple common standards

Standards Conformance

Standard	Tru64 UNIX	HP-UX
IEEE POSIX 1001.3c Kernel threads	√	
IEEE POSIX 1003.1-1996 System calls	√	
IEEE POSIX 1003.1b Real-time APIs	√	$\sqrt{}$
IEEE POSIX 1003.2 Commands and Utilities	√	
X/Open Portability Guide (XPG3, XPG4)	√	$\sqrt{}$
Single UNIX Specification V1 (UNIX 95)	√	
Single UNIX Specification V2 (UNIX 98) 3/25/2004 2004 Interex Solutions Conference	$\sqrt{}$	Almost!

Standards Conformance (cont)

Standard	Tru64 UNIX	HP-UX
System V Interface Definition (SVID3)	$\sqrt{}$	$\sqrt{}$
X11 Window System, Font Server and Clients	R6.5	R6.2
OSF/Motif 2.1	$\sqrt{}$	$\sqrt{}$
FIPS 151-2	$\sqrt{}$	$\sqrt{}$
FIPS 189	$\sqrt{}$	$\sqrt{}$
LP64	$\sqrt{}$	

Development Environment Comparison

- Compilers
- Linkers
- Debuggers
- Make
- Threads
- Libraries and APIs
- Floating Point Exception Handling
- Data Alignment
- Endianism
- Security

Compilers

- C, C++, Fortran, Java and assembler are covered in porting guide
- Includes tables mapping Tru64 UNIX compiler options to HP-UX compiler options
- Tru64 UNIX Migration Environment for HP-UX includes a cc driver to map Compaq C compiler options to the equivalent options for HP C

NOTE:

- HP-UX compilers generate 32-bit objects by default
- Use +DD64 option to generate 64-bit image.

C Compilers

- Both Compaq and HP C compilers support ANSI
 C
- Strictly conformant code will compile and run without change
- Turn on strict ANSI checking (-std1 option) to find non-compliant code
- HP ANSI C compiler for Itanium[®] platforms does not support K&R mode

Language Mode Options

Compaq C	HP C	Description
-std (V5.x default)	-Ae (default)	ANSI C mode w/ extensions
-std0 (V4.x default)	-Ac (PA-RISC only)	K&R C
-std1	-Aa	Strict ANSI C

Namespaces

Tru64 UNIX	HP-UX	Standard
-D_OSF_SOURCE (Default)	-D_HPUX_SOURCE (Default for-Ae)	Proprietary interfaces
-D_XOPEN_SOURCE=500	-D_XOPEN_SOURCE=500 or -DUNIX_STD=98	UNIX 98
-D_XOPEN_SOURCE_EXTENDED	-D_XOPEN_SOURCE_EXTENDED	UNIX 95
-D_XOPEN_SOURCE (Default)	-D_XOPEN_SOURCE	XPG4
-D_POSIX_SOURCE	-D_POSIX_SOURCE	POSIX
-D_ANSI_C_SOURCE	Default for -Aa and c89	ANSI C

Example: Define Namespace when using –Aa on HP-UX


```
/* open.c */
#include <fcntl.h>
#include <stdio.h>
main( int argc, char *argv[]) {
int fd1:
fd1 = open( "testfile", O_CREAT|O_RDWR, 0666 );
if(fd1 < 0) { perror("open testfile"); exit(1);}
printf( "file descriptor %d opened\n", fd1);
% cc -Aa open.c
Error 172: "open.c", line 9 # Undeclared variable 'O CREAT'
% cc -Aa -D_POSIX_SOURCE open.c
```

Porting C Code Without Prototypes

- Functions w/o prototypes assumed to return type int
- Tru64 UNIX compilers return a 64-bit value
- HP-UX compilers return a 32-bit value, resulting in truncation of upper 32 bits for routines intended to return a 64-bit long or pointer
- Use –warnprotos option with Compaq C to detect function calls w/o prototypes
- Use +tru64 option with HP C A.05.50 or higher to obtain Tru64 UNIX behavior
- Recommended solution: use prototypes!

Example: Calling Functions w/o Prototypes on HP-UX


```
/* noproto.c */
                                  % cc +DD64 noproto.c foo.c
#include <stdio.h>
                                  % ./a.out
int main() {
                                  The returned value is:
                                  0x55667788
long a;
a = foo();
printf ("The returned value is:
0x%lx\n", a);
return 0; }
/* foo.c */
                                  % cc +tru64 +DD64 noproto.c
                                  foo.c
long foo()
                                  % ./a.out
return 0x1122334455667788L;
                                  The returned value is:
                                  0x1122334455667788
```

C++ Compilers

- Both Compaq and HP C++ compilers support ANSI C++
- Default for Compaq C++ is –std ansi, which supports commonly used extensions.
- Use –std strict_ansi option for Compaq C++ to flag any nonstandard code
- Use –Aa option with HP aC++ to enable ANSI C++ Standard features like standard scoping rules for variables declared in conditional statements like for loops.

Scoping Rules for Variables in a for loop


```
/* forloop.C */
int main() {
int sum = 0;
for (int k = 0; k!=100; ++k) /* line 3 */
 sum += k:
for (int k = 100; k!=0; k--) /* line 5 */
 sum += k;
% aCC forloop.C
Error 173:"forloop.C", line 5 # Redefined symbol 'k';
 previously defined at ["forloop.C" line 3].
% aCC -Wc,-ansi for scope, on for loop.C
```

C++ Options to Select iostreams Library

- Default iostreams library is different on Itanium[®] than Alpha or PA-RISC
- NOTE: -AA and -AP options are mutually exclusive. All objects and libraries for an executable must be consistently built with one or the other.

iostream s library	Compaq C++	HP aC++
Pre- standard	- D_NO_USE_STD_IO_STRE AM (default)	-AP (PA-RISC default)
Standard	-D_USE_STD_IOSTREAM Or -std strict_ansi[_errors]	-AA (Itanium® default)

Functionality in ANSI/ISO C++ standard not yet supported by HP aC++:

21

- Support for universal character sequences (\uxxxx)
- Template features:
 - Separation model for template compilation (export keyword)
 - Template template parameters
 - Omission of template parameter names

Compaq C++ supports all but export keyword

Fortran

- Both Compaq and HP Fortran compilers conform to Fortran 90 and Fortran 95 standards
- Both support a full OpenMP implementation
- Compaq Fortran highly compatible w/ FORTRAN 77. HP Fortran does not support FORTRAN 77 nonstandard extensions
- See HP Fortran Programmer's Guide for info on migrating to Fortran 90:
 - http://docs.hp.com/hpux/dev/index.html#Fortran

Linkers

- Library Search Order
- Uninitialized Global Data

Library Search Order

- Library search order differs between Tru64 UNIX and HP-UX linkers:
 - Tru64 UNIX searches all directories in the search path for shared libraries and then makes a second pass to search for archives.
 - HP-UX linker makes one pass of all directories, looking for shared libraries then archives in each one (like –oldstyle_liblookup on Tru64 UNIX)
- May need to explicitly specify library names or change order of directory specifications on link line

Example: Library Search Order

Libraries L1/libA.a L2/libA.so L2/libB.so

Tru64 UNIX	HP-UX
% cc -LL1 -LL2 main.c -IA -IB -rpath L1:L2	% cc -LL1 -LL2 main.c -IA -IB
% ldd a.out	-WI,+vtype,files
/usr/bin/ldd a.out	Loading main.o:
Main => a.out	Loading L1/libA.a[a.o]:
libA.so => L2/libA.so	Loading L2/libB.so:
libB.so => L2/libB.so	
libc.so => /usr/shlib/libc.so	Loading /usr/lib/hpux32/libc.so:
	Loading /usr/lib/hpux32/libdl.so.1:

Uninitialized Global Data

- Resolution of uninitialized global data differs between HP-UX and Tru64 UNIX:
 - On Tru64 UNIX, external definition is used if available, otherwise, uninitialized element used for symbol resolution
 - On HP-UX, uninitialized global data references are implicitly initialized to zero, and data references are resolved by first definition encountered rather than continuing to search for an initialized data object.

Example – Uninitialized Global Data


```
% cat a.c
int object; /* Uninitialized global symbol */
void a()
{ printf("\tA object is %d\n", object); }
% cat b.c
int object=1; /* Initialized global symbol */
void b()
% cat main.c
int main(int argc, char* argv[])
{ a(); }
```

Example – Uninitialized Data (continued)

Tru64 UNIX	HP-UX
% cc -c main.c	% cc +DD64 -c main.c
% cc -shared a.c -o libA.so	% cc +DD64 -b a.c -o libA.so
% cc -shared b.c -o libB.so	% cc +DD64 -b b.c -o libB.so
% cc main.o -LrpathIA -IB -o test	% cc +DD64 main.o -L WI,+b,IA -IB -o test2
% ./test	% ./test2
object is 1	object is 0
	NOTE: result is link order dependent!

 Resolution: Declare object as extern in a.c: extern int object;

Debuggers

- See Guide to Using HP WDB for Ladebug Users (available in the Tru64 UNIX to HP-UX STK)
- Use +noobjdebug linker option on Itanium® to put debug info in executable (to match Tru64 UNIX behavior)
- Debugging shared libraries requires use of the chatr(1) command on Itanium[®], or pxdb on PA-RISC, if attaching to a running process:

On Itanium®:

% chatr +debug enable a.out

On PA-RISC:

% /usr/ccs/bin/pxdb -s on a.out

Make

- Tru64 UNIX provides three versions of make
- /usr/bin/posix/make is most like the HP-UX System V make
- The default make on Tru64 UNIX (/usr/bin/make)
 has been ported to HP-UX (available in the
 Migration Environment)
- cc and ld drivers in Migration Environment may be used to help port make files

Threads

- POSIX threads implementation on both Tru64 UNIX and HP-UX (Itanium® only) are based on two level scheduling and an MxN model.
- Use of any nonportable threads APIs (with _np suffix) will have to be replaced. See porting guide for mapping of some _np APIs to existing HP-UX threads APIs.
- Some _np APIs available in Migration Environment
- See porting guide and "Guide to HP WDB for Ladebug Users" for mapping of Ladebug threads commands to WDB commands

Compiling Threaded Programs

Tru64 UNIX:

% cc myprog.c -pthread

HP-UX:

% cc +DD64 -mt myprog.c (Itanium® only)
OR

% cc +DD64 -D_POSIX_C_SOURCE=199506L myprog.c -lpthread

NOTE: omitting —lpthread will not generate a compile-time error!

Use –mt option for HP aC++/ANSI C to compile threaded C and C++ programs on Itanium®-based systems

Use –D_THREAD_SAFE to select thread-safe versions of I/O routines if using iostream.h (set by –mt option)

Libraries and APIs

- Engineering work currently underway to:
 - enrich HP-UX with Tru64 UNIX-unique functions
 - resolve or document conflicts
 - Migration Environment provides some Tru64 UNIX APIs on HP-UX, including selected:
 - Math routines
 - Pthread routines
 - Arena malloc routines
 - Secure temp file routines
 - Networking routines
 - Signal routines

Examples – API Differences

malloc()

 The return value of malloc() when passed a zero is undefined by standards. Tru64 UNIX returns null, while HP-UX returns a valid pointer

String routines

- Passing null pointer generates SEGV on Tru64 UNIX
- Use –z linker option on HP-UX to allow run-time detection of null pointers
- Exception: strcmp() on HP-UX never triggers SEGV when passed null pointer

Floating-Point Exception Handling

- Default handling mode for floating-point exceptions is different between Tru64 UNIX and HP-UX:
 - HP-UX suppresses all exceptions by default (IEEE behavior); Tru64 UNIX does not
 - Tru64 UNIX ignores underflow and inexact exceptions, but overflow, divide-by-zero, and invalid operations will generate a trap. Also, denormalized values are flushed to zero (fast underflow) by default.
- Tru64 UNIX default behavior can be obtained on HP-UX by using the +FPOVZD compiler option:

% cc +FPOVZD foo.c

Data Alignment

- Alpha, PA-RISC and Itanium[®] processors require data to be aligned on natural boundaries.
- Tru64 UNIX provides support for handling unaligned data accesses, either by silently correcting or issuing message
- HP-UX does not perform unaligned access fixups. SIGBUS signal is raised, allowing application to handle or fatally exit.
- Unaligned data access fixup on Alpha causes performance hit. On HP-UX, a fatal error occurs.

Compiler Support for Accessing Unaligned Data

- Tru64 UNIX compilers provide __unaligned keyword to generate code for unaligned loads and stores
 - More expensive than aligned data access, but faster than generating alignment faults
- HP C and C++ compilers on Itanium[®], and C++ compiler on PA-RISC provide UNALIGN pragma which affects the next typedef declaration:

```
#pragma UNALIGN 1
typedef int ua_int; // ua_int has 1 byte alignment
typedef int a_int: // a_int has natural alignment
```

Handling Data Storage in Endian Neutral Formats

- Store data in defined endian format
 - e.g. network data and Java traditionally use big endian
- Add additional data to indicate format
 - Fortran allows endianness control based on OPEN statement
- Store data in endian neutral format such as ASCII strings
 - e.g. XML data

Security

- Tru64 UNIX and HP-UX use two different security facilities:
 - Security Integration Architecture (SIA) on Tru64 UNIX
 - Pluggable Authentication Modules (PAM) on HP-UX

 See porting guide for a comparison and mapping of SIA APIs to PAM APIs.

Additional Topics in Porting Guide

- Run-Time Environment
- Multiprocessor Environments
- Clustering
- Hardware
- Graphics
- Networking
- Internationalization
- Kernel and Driver Interfaces
- Freeware
- System Tuning

Transition Tools

- Appscan
 - Utility to list all dependencies (shared libraries and symbols) of an executable and the disposition on HP-UX of each API

http://www.hp.com/go/tru64appmigration

- Tru64 UNIX to HP-UX Software Transition Kit
 - Identifies compatibility issues between Tru64 UNIX and HP-UX

http://devresource.hp.com/STKT

- Tru64 UNIX Migration Environment for HP-UX
 - Software compatibility layer on HP-UX for select Tru64 UNIX APIs, tools and commands

http://www.hp.com/go/tru64appmigration

Resources

Tru64 UNIX to HP-UX 11i Porting Guide http://www.hp.com/go/tru64appmigration >> porting guide

Application Migration Website http://www.hp.com/go/tru64appmigration

From Tru64 UNIX® to HP-UX http://www.hp.com/go/tru64transition/

Alpha Retain Trust Program http://www.hp.com/products1/evolution/alpha retaintrust/

HP Developer and Solution Partner Portal http://www.hp.com/dspp/

HP Test Drive Program http://www.testdrive.hp.com

