# Introduction To Storage Area Networks

HP Interex West Symposium Session # 3147 March 2004

Jim Gursha High Performance System Solutions, Inc. 1735 York Avenue, 32H New York, NY 10128 212-831-0291/917-359-2087 jimgursha@sandisks.com

# Topics Of Discussion

### Storage Area Networks (SANs) Introduction

- Basics of Storage Area Networks What they are comprised of (hardware components) and what type of layered software products are available to make complete SAN solutions
- Storage Concepts A discussion of the differences between direct attached storage (DAS), network-attached storage (NAS), and SAN based storage. Storage Virtualization concepts are introduced and contrasted with the different storage paradigms available today.
- Topics In NAS/SAN Convergence
- When is a SAN an appropriate solution?
- SAN Cost Justifications
- Hardware/Software Cost Savings
- Storage/System Management Personnel Savings
- Business Continuity and Disaster Recovery Aspects

## Storage Area Networks

➤A SAN is a collection of hosts, and storage...

However, there is much more to a SAN.... increased benefits!

## **SAN** Architecture



# Storage Area Networks

SAN Hardware, Software, and Value Proposition

## Host Bus Adapters

 Understanding Individual Component Utilization Is A Necessary Part of SAN Architecture and Implementation.

 Selecting the Right Component Will Lower Overall SAN Costs.

## Host Bus Adapters

- Connect the Server to the SAN.
- Alleviate the Server From Some I/O Processing.
- Typically, Assist in the Execution of Parts of Communications Protocol.
- Compatibility Across HBA's.

## Emulex HBA's

0

| Bus Type                | PCI<br>Expre<br>ss          | PCI-<br>X/PCI                                                          | cPCI                            | SBus                            | PCI                        |  |
|-------------------------|-----------------------------|------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------|--|
| Bus Speed               | <u>x4</u>                   | <u>133/1</u><br>00/66<br><u>MHz</u>                                    | <u>66/33M</u><br><u>Hz</u>      | <u>25MH</u><br><u>Z</u>         | <u>66/33</u><br><u>MHz</u> |  |
| Link Speed <sup>1</sup> | 2Gb/s                       | 2Gb/<br>s                                                              | 2Gb/s                           | 2Gb/s                           | 2Gb/s                      |  |
| Midrange <sup>2</sup>   |                             | LP10<br>50<br>LP98<br>2                                                |                                 |                                 | <u>LP952</u><br>L          |  |
| Enterprise              | <u>LP100</u><br><u>00Ex</u> | LP10<br>000<br>LP98<br>02                                              | <u>LP900</u><br>2C <sup>3</sup> | <u>LP900</u><br>2S <sup>3</sup> | <u>LP900</u><br><u>2L</u>  |  |
| Dual Port               | <u>LP100</u><br><u>00Ex</u> | LP10<br>000D<br>C<br>LP10<br>50DC<br>2<br>LP98<br>02DC<br>LP94<br>02DC |                                 |                                 | LP900<br>2DC               |  |

# Emulex LP1000 EX

- Single and Dual-channel PCI Express to 2Gb/s Fibre Channel models
- x4 PCI Express Connector, standard
- 4-lane negotiation
- Driver Compatibility Across Emulex Product Line
- Upgradeable Firmware Based architecture
- Centralized HBA management suite, HBAnyware<sup>™</sup>
- Dynamic load balancing and high availability with MultiPulse<sup>™</sup>

# Emulex HBA's

### Dual Channel (LP9402DC)

- High performance through the use of two Emulex Centaur ASICs,
- Two 266MIPS onboard processors, high speed buffer memory.
- Automatic speed negotiation capability which allows complete compatibility between 1GBS and 2 GBS.
- Switched fabric support, full-duplex data transfers.
- High data integrity features, support for all Fibre Channel topologies
- Dual channel HBA. Channels deliver up to 800MB/s link bandwidth

# Emulex LP 10000

- Enterprise—class HBAs ideal for large or mixed OS SAN environments
- Single- and dual-channel PCI-X to 2Gb/s Fibre Channel models
- Full fabric support with automatic topology and speed adaptation
- cHBA API support (FC-MI) enables simplified SAN management
- Onboard hardware context cache for superior fabric support and high transaction performance
- Support for use of multiple concurrent protocols (SCSI & IP)
- FC service class 2 and 3 support
- FC-Tape (FCP-2) device support
- Simultaneous on card support for remote boot in x86, Itanium (BootBIOS and EFI), and OpenBoot in Unix environments
- End—to—end parity protection for high data integrity
- Large on card data buffer supports over 50km cabling at full 2Gb/s bandwidth

# **EMULEX HBA's**

### • Single Channel (LP9802)

- -Full duplex 2Gb/s Fibre Channel delivering up to 400MB/s
- Automatic speed negotiation
- Automatic topology detection
- Full fabric support using F\_Port and FL\_port connections
- Onboard hardware context cache for superior fabric performance
- Support for multiple concurrent protocols (SCSI and IP)
- Full support for both FC service class 2 and 3
- Full fabric boot support in x86 and SPARC environments to multiple LUNs
- Support for FC-Tape (FCP-2) devices
- 66/100/133 MHz PCI-X 1.0a and PCI 2.2 compatibility
- End-to-end parity protection for high data integrity
- Buffered data architecture to support over 50km cabling at full 2Gb/s bandwidth
- Robust suite of software supporting Windows Server 2003, Windows 2000, Windows NT, HP-UX, Linux, NetWare and Solaris
- Optical small form factor (LC) interface

# Emulex GN9000 SI (ISCSI HB A)

- multiple OS/platform support: Windows.NET, Windows 2000 and Linux
- 32/64 bit 33/66MHz PCI v2.2 host bus adapter
- IGb/s Ethernet link speed, full duplex
- SCSI architectural model (SAM-2) and SCSI-3 command sets
- SCSI block level data encapsulated in IP (iSCSI)
- supports initiator and target mode
- support for standard TCP/IP-reliable data delivery (TCP), IP routing
- remote data access from Fibre Channel SANs over Ethernet/IP networks through storage routers

### FC Hubs and Switches







### Hubs

- 7 port and 12 port models
- Much lower cost than switches
- Used in smaller SANs
- Switches
  - 8, 16, 64 and 128 port models
  - Better isolation than hubs
  - Switches are more \$ than hubs.
  - Scalable to large SANS
  - Cascading, Zoning, Quickloop
  - Higher MTBF, easier repair
- GBICs (GigaBaud Interface Cards)
  - Short and long wave variants
  - LW to 100Km
  - SW to 500m

## **FC** Implementation



### Hub/Switch may look the same!

- Electrical Isolation (hot connect)
- Radial Topology
- Hot replacement of GBICs

### **Hubs implement FC-AL**

- Logically equivalent to a single path loop
- Bandwidth is 100 MB/Sec
- Nodes see all data

### **Switches implement FC Fabric**

- Switches act like network routers
- Multiple communication paths
- Bandwidth is aggregate of paths
- Switches provide logical isolation
- •Significantly better performance



\*\* FC Switches provide non-blocking Dynamic Paths \*\*

# Fabrics

### Scalability means more than adding ports

- Supporting data growth while sustaining infrastructure performance, availability, and management capability

### Enable scalability

- -Design fabric that supports key environment attributes
  - Examples: Data Store Size and location, Backup, Distance, Applications

### Fabric design drives product selection

- Switched Infrastructure
  - Building block size
  - Availability
  - Link performance
- Management
  - Device to Fabric-wide

### Large Fabric Design

#### **Switch Fabric**

#### **Director Fabric**



### Fabric Switches vs Directors

|                                    | Switches                            | Directors |
|------------------------------------|-------------------------------------|-----------|
| Availability (Uptime)              | 99.9%-99.99%                        | 99.999%   |
| % Throughput affected by a failure | Up to 50%                           | 0%        |
| Management Complexity              | 18 Devices                          | 2 Devices |
| Service Down Time                  | Replacement =<br>1 hour (best case) | 0 minutes |
| Cost (estimate)                    | \$567,000                           | \$491,000 |

### Fabric Architecture Design







Directors core connectivity Fabric Switches



Web Management Software

### Fabric Architecture Design



## Fabric Matrix



### **Directors and Switches**

### Availability

- Director: ~99.999%
  - downtime < 5 minutes / year
- Fabric Switch: ~99.9%
  - downtime 8.8 hours / year

### Any-to-Any Connectivity

- Director: large port count
- Fabric Switch: small to medium port count

### Serviceability

- Director: non-disruptive
- Fabric Switch: potentially disruptive

### Scalability

- Director: better fabric scaling
- Fabric Switch: Use Multiple Switches







### SilkWorm 2800 Front Panel



### 1" fibre channel disk drives

- dual-ported 2Gb/sec FC-AL
- dual FC-AL interface allows up to 120 drives to be supported per FC-AL pair
- 36GB and 72GB 10K rpm; 36GB 15K rpm



| capacity                                              | 36GB           | 72GB           | 36GB           |
|-------------------------------------------------------|----------------|----------------|----------------|
| spindle speed                                         | 10K rpm        | 10K rpm        | 15K rpm        |
| rotational latency                                    | 2.99 msec      | 2.99 msec      | 2.0 msec       |
| average<br>read/write                                 | 4.7 / 5.2 msec | 4.7 / 5.2 msec | 3.6 / 4.2 msec |
| <del>ਝਵਾk-ਪਿ9-</del> Prack<br>read/write seek<br>time | 0.6 / 0.9 msec | 0.6 / 0.9 msec | 0.3 / 0.4 msec |

# **Universal Hot Plug Carrier**



### hp online storage portfolio

MA/EMA

| VA71      | 00 |
|-----------|----|
| • • • • • | 00 |



**MSA1000** 

#### business entry

- moderate scalable modularity
- investment protection:
  - DAS to SAN (DtS)
- moderate scalability
- price sensitive
- faster life cycles

#### ACS V8.7 business midrange

- scalable modularity
- heterogeneity
- ease of administration
- price/performance
- moderate functionality

#### business enterprise

monolithic or modular

EVA

XP

- high connectivity
- high scalability

EVA

VA

va7410

- high efficiency
- high performance
- lower TCO
- highest disaster tolerance
- · ease of administration
- universal connectivity and heterogeneity

### hp nearline storage systems

1/8



#### business entry

- low cost
- traditional backup okay
- perfect for DAS
- departmental workgroup
- >8 hour backup window

### 2/20-10/100 series MSL series

#### business midrange

- high storage density, scalable products
- supports Ultrium, SDLT, and DLT
- short backup window <8 hours</li>
- unpredictable growth- need ability to scale
- heterogeneous environments
- medium to large enterprises
- entry-level SAN



#### business enterprise

- high capacity and performance
- supports Ultrium, SDLT, DLT, and 9840
- very short backup window <4 hours</li>
- advanced levels of high availability, performance, scalability, and capacity
- heterogeneous environments
- enterprise data center
- large scale SANs

### SAN Ancillary Products Overview

### HP StorageWorks Layered Products Overview

#### **Proactive Services**



### hp storage management software

storage area management

### proactive services

OpenView storage area manager suite

- storage node manage
- allocater
- optimizer
- builder
- accountant
- new services
  provisioning and planning



centralized management



remote services

## HA and replication

partner solutions enterprise volume

data protection

data protector

and management

- manager
- data replication manager
- secure path/auto path
- array-based software

## Point-in-Time Copy Enterprise Volume Manager



### Highly Available Wide Area Data

Wide Area Network Links (SOIP, IFCP, Fibre Channel, ATM, FC-IP)

2

• Dual On-line (Active-Active) Data-centers

2

- Applications Simulataneously active in both Data-centers
- Data Constantly Updated Between Datacenters

# Web Tools: Switch Management GUI

- Platform independent management
  - JAVA Based
- Scalable across the Interface entire fabric
- In band data from switch to switch
- Detailed data & management
  - Statistics
  - Zoning
  - Name Services



Brocade<sup>®</sup> Web Tools

### HP SANworks<sup>™</sup> Network View

- Simplified SAN administration from one console
- Automated monitoring of device availability and performance and notification when issues arise
- Increases system administrator capabilities
- EMC Symmetrix support
- Brocade and McData support





# Zoning

- Provides OS & storage isolation
- Store multiple zone configurations
- Zones based on port # or device WWN
- Updates distributed dynamically across the fabric
- Overlapping zones allowed
- No logical limit on the # of zones



### **Storage Connect Architectures**






# **Networked Storage: SAN**

Storage Area Network - Dedicated multi-protocol data network typically implemented with Fibre Channel



Storage Area Network

- Typically block level access as opposed to file level access
- Server oriented
- File system on application server
- Provides more distance than DAS
- Overcomes connectivity of DAS
- Great for Database support

# **Networked Storage: NAS**

Network attached storage that is accessed by clients and servers via standard network interface



Network Attach Storage

- Optimized for a file serving
- Designed to move files
- Easy Installation and Monitoring
- Network access by workstations
- Utilize existing network
- Unix/Windows file sharing

# The Need For Networked Storage

- Networked Storage Drivers
  - The explosion of data & network traffic
  - Increasing value of data & information
  - Requirement for non-stop information access
  - Transforming data to information; to knowledge; to competitive advantage
  - Accelerating pace of technology change
  - World Wide Web explosion
  - Shortage of skilled personnel

# Why Networked Storage?

- Moving to networked storage provides
  - Increased data and network availability
  - Consolidation of storage and practices
  - Increased heterogeneous storage utilization
  - Consolidated storage acquisition costs
  - Simplified and centralized management
  - Non-disruptive storage/server scalability

Why Network Attached Storage? Networked Storage: NAS – Multiple Protocol support Microsoft Clients (SMB/CIFS) UNIX Clients (NFS) •HTTP - (Web Browsers) Removes server I/O bottlenecks and overhead Speeds increase as bandwidth increases ●10Mb>100Mb>1Gb

Easy Installation and Manageability

## **Direct Attachment**



# **SAN Attachment**



## **NAS** Attachment



# **NAS** Applications

- File serving(relieve NT servers)
- Web serving
- Multimedia
- Video streaming
- Graphic design
- CAD/CADAM
- Engineering
- Imaging

# **Flat File Oriented**

# Focusing On NAS

- Provides multi-server access over a <u>shared</u> network using network FILE (NFS/CIFS) protocols
- NAS is a server independent appliance
- Reduces server bottlenecks and overhead
- NAS uses existing network infrastructure
- Easy installation and management

# NAS Advantages

### Networked Storage: NAS

- Multiple Protocol support
  - Microsoft Clients (SMB/CIFS)
  - UNIX Clients (NFS)
  - HTTP (Web Browsers)
- Removes server I/O bottlenecks and overhead
- Speeds increase as bandwidth increases
  - 10Mb>100Mb>1Gb
- Easy Installation and Manageability

#### <u>NAS</u>

NFS protocolGlobally over a net

### <u>SAN</u>

**SCSI** protocol

Over a storage interconnect that looks like a network

•Slower NFS speed

d Faster SAN SCSI speed

NFS overhead greater

Inexpensive, easy complicated

Lower SAN SCSI overhead

Prices dropping,

NAS established today SAN is now a Standard

•Shared storage Shared storage

Shared data

**Promises shared data** 

### NAS and SAN

|                      | NAS                | SAN                           |
|----------------------|--------------------|-------------------------------|
| Type of Storage      | Shared files       | Virtualized, pooled<br>blocks |
| Protocols, Transport | TCP/IP, Ethernet   | Fibre Channel                 |
| Consumer             | Clients or servers | Server                        |
|                      |                    |                               |

# **Compaq NAS Product Line**





#### <u>NAS</u>

NFS protocolGlobally over a net

### <u>SAN</u>

**SCSI** protocol

Over a storage interconnect that looks like a network

•Slower NFS speed

d Faster SAN SCSI speed

NFS overhead greater

Inexpensive, easy complicated

Lower SAN SCSI overhead

Prices dropping,

NAS established today SAN is now a Standard

•Shared storage Shared storage

Shared data

**Promises shared data** 

## Virtualization Technology Introduction

#### Virtualization: Storage

- Enables vast amount of physical capacity scattered across the enterprise to appear as a single large pool of data for presentation to application servers.
  - Storage pool is a single manageable entity
  - Virtualization can occur at any of three levels.
  - All levels can be used together, or independently, to maximize the benefits to customers:
    - Server level: Ideal for small entry level needs
    - SAN Fabric level: SAN-wide virtualization
      - increase efficiency in SAN development, management, and service
    - Storage System level: Ideal for large volumes without sacrificing performance or reliability

#### Virtualization — Abstraction of Storage at the Block Level



### Why is Virtualization Important Anyway?

### • Virtualization will:

- Provide investment protection for nonvirtualized arrays
- Provide a Common Storage Pool that will allow for greater efficiency and not a load of stranded capacity in servers or on SAN RAID volumes/arrays
- Data Migration that is transparent to the OS for upgrades, changes, etc to dataset for applications
- Reduction of ownership costs



### **StorageWorks Enterprise Virtual Array**



#### Server Level

- Homogeneous SAN and non-SAN deployment
- Limited interoperability with HWare or Sware
- SANworks Virtual Replicator MS Windows

#### **Fabric Level**

- Open SAN environments
- Conventional and virtualized storage systems
- SANworks VersaStor Asymmetric (future)

#### System Level

- Independent of the server host
- Virtually Capacity-Free Snapshot on RAID
- StorageWorks Enterprise Virtual Array

# **EVA Virtualization Primer**

- - Data

It doesn't matter where or how data actually stored

### EVA Virtualization Primer (con't)

- Data location independence
  - Makes new benefits possible
  - BUT to realize those benefits, we must change some old habits
    - Backend disk access pattern no longer correlated with host access pattern
    - Stop using configuration as "organizing" tool
      - Use EVM capabilities instead
    - Resist temptation to micromanage
    - Avoid temptation to utilize every last byte

### Virtual Disk Mapping

 Controller assigns the logical blocks of a virtual disk to specific physical disk blocks via a dynamic "map" that the controller manages.



### Virtual Disk Mapping (con't)



## Virtual Disk Mapping (con't)

Physical segments for a given virtual disk

- can come from any of the disks in the disk group
- can and will change over time
- may be "reserved" but not "assigned" until later
- may be "assigned"
  - -- when unit is created
  - -- when needed

# Business Continuity & Disaster Recovery

# Loss of Capability to Perform Basic Business Functions



No longer just a computer disaster after 1 or 2 days

## Intangible Costs of Computer Outages From a survey of 160 MIS Managers



# The Effects of Data Loss

When Companies lose data in a disaster, 50% never reopen and 90% are out of business in two years

Source: University of Texas

93% of companies that suffer a significant data loss are out of business within five years

Source: U.S. Bureau of Labor

43% of U.S. businesses never reopen after a disaster and 29% close within two years

Source: University of Wisconsin

30% of computer users say the spend the equivalent of one week per year reconstructing lost data.

Source: 3M Corporation

# **Estimated Value of Data**

| Website corporate page       | 1-10 percent of daily sales   |
|------------------------------|-------------------------------|
| Customer support call center | 1-10 times an average invoice |
| E-mail message<br>database   | \$1000 per employee           |
| Competitive intelligence     | 1-5 percent of annual sales   |

# Terms

Fault Tolerant
Disaster Tolerant
Disaster Recovery

–RPO, RTO, RSO

Business Continuity
Contingency Planning

# Fault Tolerant

Applied to CPUs and some subsystems
No *single point of failure* (spof)
A "local phenomenon"

# **Disaster Tolerance**

Disaster Tolerance is Fault Tolerance where the single point of failure you are trying to eliminate is the <u>datacenter</u>.

Achieved through redundancy and distance.

# **Disaster Recovery**

Usually refers to physical disasters, i.e., earthquake, fire, flood, terrorist attack
Includes more than just computing infrastructure

### Associated with three objectives

- -Recovery Point Objective
- -Recovery Time Objective
- -Recovery Service Objective

# Objectives


#### **Disaster Recovery Timelines**



### BC/CP

#### Business Continuity/Contingency Planning

# Usually refers to Disaster Recovery plus non-physical phenomena such as product tampering, failure of a supplier, strike, biohazard.

## Implementing Disaster Recovery

- Two major questions:
  - 1. What disaster are you trying to survive?

## Implementing Disaster Tolerance





#### **Full-Scale Nuclear War**

**Metropolitan-Area Disaster** 



**Building-level Mishap** 

**Administrative Assault** 

## Implementing Disaster Recovery

- Two major questions:
  - 1. What disaster are you trying to survive?
  - 2. Have you done a Business Impact Analysis?

#### **Business Impact Analysis**

 If you haven't done a BIA, you don't know how much time, effort, and money
 to spend on your business continuity plan.

### **Disaster Tolerance Basics**

#### TANSTAAFL

-Redundancy is needed

- **2**N
- N+1
- -Need to manage the redundancy
- -Vigilance
  - Errors
  - Configuration changes
  - What's normal

#### **Disaster Tolerance Basics**

- Distance
  - -Bandwidth
  - -Latency
  - -Partitioning

#### Bandwidth

- Affects-Large transfers-Backups
  - -Recovery

#### Latency





Affects
 – Request rate
 – Small transfers

■1ms/100mi

Buffering to "decrease" latency is a compromise masquerading as a solution



If site 1 fails, then no messages are received by site 2
Must be time to make site 2 operational



# If the communications link fails, then site 2 receives no messages It is NOT time to make site 2 operational







## Selling It

#### Is not easy.

- -No one wants to discuss doom and gloom
- -No heroes
- -Urgency is hard to instill (or maintain)
- -It is selling insurance
- -ROI is hard to identify
- BIA can open the door
- Key phrase to listen for "We can't let that happen."

#### Summary

# If it were easy, everybody would do it.