

ONC/NFS Changes Planned for HP-UX

Dave Olker

Advanced Technology Center System Networking and Security Lab

• ONC 2.3 Client-side Enhancements

> NFS Client Kernel Improvements

- New Version of AutoFS
- New Version of CacheFS
- ONC 2.3 Server-side Enhancements
 - NFS Server Kernel Improvements
 - New Version of the Mount Daemon
 - New Version of the Lock Manager
 - New Version of NIS
- ONC 2.3 Features Available in 11i v1/v2

NFS Client Kernel Improvements

- Access Control Lists
- Client-side Failover
- Client I/O Kernel Thread Management
- Local NFS File Locking
- Support for Unified File Cache
- Direct I/O (Non-Cached I/O)
- Attribute Cache Consistency Improvements
- Asynchronous I/O to Locked Files

An access control list, or ACL, is a list of user ids and group ids with associated read/write/execute permissions on a file for which the ACL is defined. On HP-UX systems, only **POSIX** ACLs are supported.

ACL Behavior on HP-UX 11i v1 and v2

- HP-UX supports **POSIX** ACL's on VxFS 3.3 (or higher) Filesystems
- An HP-UX 11i v1 or v2 NFS **server will enforce** an ACL placed on a VxFS 3.3 file
- An 11i v1 or v2 NFS client cannot view or change/set the ACL

ACL Behavior on HP-UX 11i v3

- Users on the NFS client may view or **change/set** a POSIX ACL
- **nfsstat(1M)** reports the number of *getacl* and *setacl* calls made

Allows an NFS client to automatically switch to another server if the original server stops responding to requests because of a hardware/software failure, excessive load, or a network fault

Example:

mount -F nfs -r bee,wasp:/export/share/man /usr/man

- Server switch is transparent to users and applications
- Filesystem must be mounted **read-only**
- Filesystems on the specified servers must be **identical** (use cpio)
- Different from **ONC 1.2 AutoFS** "Replicated Servers" feature (i.e. doesn't require an unmount/remount to take effect)

Client I/O Kernel Thread Management

- A separate pool of kernel threads is allocated to service I/O requests for each mount point
- Threads created/killed **dynamically** based on load
- The number of threads per pool is **configurable**
- A separate I/O queue is created per mount point
- Each I/O request queue has **sub queues** for different request types (i.e. read, write, readdir, commit, etc.)
- The sub queues are serviced in **round-robin** fashion to **avoid starvation** of certain request types (i.e. read starvation due to excessive write requests)

Local NFS File Locking

- A new NFS mount option will be supported "llock"
- Instructs the kernel to *not* forward any file locks to the NFS server for any files residing in the specific filesystem mounted with the llock option
- Can *dramatically* **improve performance** for applications that do lots of file locking
- Only truly **safe** to use with **read-only** filesystems, since **data corruption** could occur if multiple clients were using **local** locking and writing to a shared file
- Reduces **over-the-wire** RPC calls for file locks

Support for Unified File Cache

ONC 1.2 Split-Cache Memory Architecture

- Buffer cache used to store file data
- Page cache used to store executables and mmap files
- Cache coherency problems with mmap files accessed via NFS
- **Poor** write performance to mmap files (synchronous vs. asynchronous)

ONC 2.3 Unified File Cache Memory Architecture

- Solves mmap problems of cache coherency
- Makes **asynchronous** writes to mmap files possible
- Uses **smaller block size** for read-before-write semantics (8K vs. 32K)
- Improves file re-write I/O performance
- Avoids flushing data caches during unsuccessful unmount attempt
- Simplifies porting of Solaris ONC code

Direct I/O (Non-Cached I/O)

- Bypass Buffer Cache (or UFC) on Client
- Sends **WRITE** requests with **FILE_SYNC** bit set (i.e. synchronous semantics)
- Most databases (i.e. Oracle, Sybase, Informix, etc.) have built-in data caching mechanisms
- **Double buffering** (i.e. once in UFC and once by the application) typically **hurts performance** for most database applications

- Weak Cache Consistency Fully Implemented
- Improved Handling of **Out-of-Order** Attribute Updates
- Better **Management** of Client Attribute and Data Caches
 - If cached attributes are out of sync after a read operation with respect to the server, **only the attribute cache** is purged and not the file cache (or other caches)
 - Better performance by reducing **unnecessary cache purges**
 - Increase NFS **rewrite** throughput on MP systems significantly
- Nanoseconds Granularity for Cached Time Attributes
- All of the above **reduce** over-the-wire GETATTR calls

Asynchronous I/O to Locked Files

ONC 1.2 Client Behavior Writing to Locked Files

- When an application places a lock on a file, all data caching (i.e. buffer cache) and asynchronous I/O daemons (i.e. biods) are disabled for the locked file
- Required for data **consistency** reasons (i.e. multiple clients caching and modifying different pieces of a shared file)
- Dramatically decreases read and write throughput to locked files

ONC 2.3 Client Behavior Writing to Locked Files

- When an application places a lock on the **entire file** then caching and asynchronous I/O are **enabled**
- When an application places a byte-range lock on a **portion** of the file then caching and asynchronous I/O remain **disabled**

• ONC 2.3 Client-side Enhancements

- ✓ NFS Client Kernel Improvements
- > New Version of AutoFS
- New Version of CacheFS
- ONC 2.3 Server-side Enhancements
 - NFS Server Kernel Improvements
 - New Version of the Mount Daemon
 - New Version of the Lock Manager
 - New Version of NIS
- ONC 2.3 Features Available in 11i v1/v2

New Version of AutoFS

- On-demand Mounting of Hierarchical Filesystems
- Browsability
- Native Support for Device IDs
- Concurrent Mount/Un-mount Thread Execution
- Reliable NFS Ping
- Support for Managing HP CIFS Client Filesystems
- Supports Disabling LOFS Mounts (HA/NFS)
- Support for ONC 2.3 Client-side Failover
- LDAP Support for Map Distribution
- Maintain Support for HP-specific Debug Logging Facility

ONC 1.2 AutoFS Behavior with Hierarchical Maps

- Hierarchical filesystems (i.e. /net –hosts) are mounted in **unison**
- Once mounted, all members of a hierarchy must remain mounted or be unmounted **together**, resulting in mount/unmount storms
- Keeping these hierarchies intact requires lots of **overhead** on behalf of the client, AutoFS, network, rpc.mountd, and the server

ONC 2.3 AutoFS Behavior with Hierarchical Maps

- Only the **top** filesystem in the hierarchy is mounted
- Other filesystems below the top filesystem are mounted when needed (i.e. accessed) and may be unmounted **independently**
- Increases performance by preventing unnecessary mounting and unmounting of filesystems

Browsability

ONC 1.2 AutoFS Behavior with Indirect Maps

 Listing an indirect mount point (i.e. /home) only displays those subdirectories that are currently mounted

ONC 2.3 AutoFS Behavior with Indirect Maps

- Listing an indirect mount point displays **all directories** that could potentially be mounted **without actually mounting** the filesystems from the remote servers
- **Every** entry in the indirect map is displayed, whether it is currently mounted or not

Native Support for Device IDs

AutoFS Unmount Behavior Prior to HP-UX 11i v3

- Kernel sends unmount request to automountd containing the device ID number associated with the filesystem being unmounted
- automountd searches /etc/mnttab for entry with this device ID
- HP's /etc/mnttab does not track device ID numbers
- automountd calls stat() against every filesystem to retrieve its device ID
- Non-responding NFS servers cause single-threaded automountd to block 75 seconds waiting for *stat()* call to timeout

HP-UX 11i v3 Includes Support for Device IDs

- Eliminates need for AutoFS to *stat()* mounted filesystems
- Significantly improves unmount performance and AutoFS availability

Concurrent Mount/Un-mount Execution

ONC 1.2 AutoFS Behavior

- Kernel thread sends mount/unmount requests to automountd
- automountd has **limited** support for multiple threads
- automountd uses a **mutex** to ensure that only one automountd thread can access the mount/umount routines at any time

ONC 2.3 AutoFS Behavior

- Kernel spawns new threads for every mount and unmount request sent to user-space automountd
- automountd is now a **fully** multi-threaded daemon
- automountd threads can service mount/unmount concurrently
- **Prevents** AutoFS from hanging if an NFS server is unavailable (single thread may block, but not all AutoFS threads)

Reliable NFS Ping

AutoFS uses an RPC "ping" routine to verify the availability of the NFS server before initiating a MOUNT or UMOUNT request

ONC 1.2 AutoFS

- Single UDP "ping" packet with a hard-coded 15 second timeout
 - "ping" can get lost on congested networks or with busy NFS servers
 - Results in failed MOUNT or UMOUNT requests
 - Blocks AutoFS service until "ping" times out
- No way to be certain if NFS server is really available or down

ONC 2.3 AutoFS

- New "-retry=n" option to force multiple server contact attempts
- Ensures more reliable communication with server
- Only blocks a single automountd thread while waiting for server

HP CIFS Client Filesystem Support

- **HP CIFS Client** is HP's client-side implementation of the Common Internet Filesystem using the SMB protocol
- Allows HP client systems to mount filesystems from WinNT servers or other CIFS/Samba servers
- AutoFS will support automatic mounting and unmounting of HP CIFS Client filesystems

Disabling LOFS Filesystems

- AutoFS uses **LOFS** mounts when it detects a "loopback" mount situation (i.e. the requested filesystem resides on the client system)
- Loopback mount scenarios common with ServiceGuard HA/NFS
- LOFS mounts wreak havoc with ServiceGuard HA/NFS
 - ServiceGuard does not attempt to unmount LOFS mounts
 - HA/NFS packages with LOFS fail to migrate to adoptive nodes

ONC 2.3 AutoFS – HP-Specific "–L" Option

- Disables AutoFS' use of LOFS filesystems
- Forces AutoFS to create Loopback NFS mounts
- Recommended for use on **HA/NFS** <u>Servers</u> running AutoFS

ONC 2.3 *Client* Supports Client-side Failover

- Server switch is **transparent** to users and applications
- Filesystem must be mounted **read-only**
- Filesystems on the specified servers must be **identical**
- Different from **ONC 1.2** "Replicated Servers" feature (i.e. doesn't require an unmount/remount to take effect)

ONC 2.3 *AutoFS* Supports Client-side Failover

LDAP Support for Map Distribution

- AutoFS maps have traditionally been distributed among groups of NFS clients via **NIS or NIS+**
- LDAP (Lightweight Directory Access Protocol) is quickly becoming the directory server access protocol recommended by most vendors
- LDAP directories will be **supported** for AutoFS map storage and distribution

HP-specific Debug Logging Facility

- Most RPC-based daemons provide **some** debug logging
- With most daemons, the logging mechanism must be enabled at **daemon start time** via the command-line
- For those problems that occur after some period of operation, collecting meaningful data is difficult if daemons must be killed and restarted – or if logging must remain running for long periods of time

HP's SIGUSR2 Debug Logging Toggle Mechanism

- This mechanism allows the administrator to toggle debug logging on and off **without killing the daemon**
- If used properly, log file only contains **meaningful data**, thereby easing troubleshooting efforts
- Support for this mechanism will remain in AutoFS 2.3

• ONC 2.3 Client-side Enhancements

- ✓ NFS Client Kernel Improvements
- ✓ New Version of AutoFS

> New Version of CacheFS

- ONC 2.3 Server-side Enhancements
 - NFS Server Kernel Improvements
 - New Version of the Mount Daemon
 - New Version of the Lock Manager
 - New Version of NIS
- ONC 2.3 Features Available in 11i v1/v2

New Version of CacheFS

- cachefspack(1M) Command
- Support for AdvFS Front Filesystems
- Support for Large Files & Filesystems
- Improved Cache Consistency Checking
- Maintain Support for "rpages" Mount Option
- New Source Code Base Enables Future Features

cachefspack(1M) Command

- Allows administrator to **pre-load** specific files and directories in the CacheFS cache
- Affords greater control over the cache contents
- Improves CacheFS performance for pre-loaded files and directories
- Ensures that specified files will be present in the cache *whenever possible* (i.e. assuming front filesystem resources are available)
- Similar to a manual version of the HP-specific
 "rpages" mount option

AdvFS Front Filesystems

• AdvFS will be one of the supported filesystem technologies in 11i v3

- CacheFS caches may reside in an AdvFS filesystem (making AdvFS the **front** filesystem)
- AdvFS filesystems may be resized on the fly by assigning more disks to an AdvFS domain
- CacheFS caches must be rebuilt if the size of an AdvFS front filesystem changes

Large Files & Filesystems

• All 32-bit dependencies in ONC 1.2 CacheFS are **resolved** in ONC 2.3 CacheFS

- All CacheFS data structures will be 64-bit compliant
- CacheFS will support the maximum file and filesystem sizes supported by the **underlying front filesystem** in which the cache resides (i.e. VxFS or AdvFS)

Improved Cache Consistency Checking

ONC 1.2 CacheFS

- The demandconst feature not fully implemented
 - Consistency check done every time **cachefsstat** issued
 - Consistency check done every time a file is **opened** via CacheFS
- Cache must be deleted and rebuilt if consistency checking mount options changed

ONC 2.3 CacheFS

- The demandconst feature is fully implemented
 - Consistency checks done no more than **30 seconds** apart
 - Consistency checks not done at file open unless 30 sec. timer expires
- Mount options (i.e. noconst and demandconst) may be changed without deleting/rebuilding the cache

HP-specific "rpages" Mount Option

HP's Solution to Binary Caching Dilemma

- Instructs the kernel loader to load entire application binaries contiguously
- Automatic no further configuration or user intervention required
- Only affects **binaries** data files are not read in their entirety, only executed binaries are fully populated
- Causes potentially slower **initial** load time, but substantially faster **subsequent** load times

Future Features Being Considered

- cachefslog
 Command
- cachefswssize Command
- cfsfstype Command
- Disconnected Mode (i.e. Server Offline) Operation
- ACL Support

- ✓ONC 2.3 Client-side Enhancements
 - ✓ NFS Client Kernel Improvements
 - ✓ New Version of AutoFS
 - ✓ New Version of CacheFS

• ONC 2.3 Server-side Enhancements

- >NFS Server Kernel Improvements
- New Version of the Mount Daemon
- New Version of the Lock Manager
- New Version of NIS
- ONC 2.3 Features Available in 11i v1/v2

NFS Server Kernel Improvements

- Maintain Support for NFS Version 2 and 3
- Maintain Support for NFS over UDP and TCP
- Server I/O Kernel Thread Management
- Support for ACL's
- NFS Server Logging Facility

Maintain Support for NFS PV2 and PV3

- NFS version 2 and 3 are supported with ONC 2.3
- Backward compatible with previous HP-UX versions
- Compatible with 3rd party implementations of NFS
- HP-specific features will remain intact
 - HA/NFS (i.e. ServiceGuard) support for both PV2 & PV3
 - HA/NFS support for NFS File Lock Migration
 - Unsafe PV2 asynchronous writing
 - Ability to disable PV3 READDIRPLUS on server
 - VOP_BREAD() used for PV2 and PV3 whenever possible to avoid cache memory copies while processing read calls

Maintain Support for NFS/UDP & NFS/TCP

- UDP and TCP protocols supported with ONC 2.3
- Backward compatible with previous HP-UX versions
- Compatible with **3rd party** implementations of NFS
- HP-specific features will remain intact
 - HA/NFS (i.e. ServiceGuard) support for both UDP & TCP
 - HA/NFS support for NFS File Lock Migration
 - Locking of nfsd **text and data segments** into memory
 - High-water memory allocation per UDP end-point

Server I/O Kernel Thread Management

ONC 1.2 Daemon/Thread Architecture

- UDP requests handled by a **fixed pool** of single-threaded nfsds
- TCP requests handled by **separate pools** of nfsktcpd kernel threads
 - 10 threads per pool maximum per connection
 - Threads only process requests arriving on their connection
- Separate STREAMS modules used for UDP (nfsm) and TCP (rpcmod)

ONC 2.3 Thread Architecture

- Both UDP and TCP requests are processed by a single system-wide pool of service threads
- Only a **single** parent **nfsd** daemon will be launched
- Threads launched and destroyed **dynamically** based on demand
- **Single** STREAMS module used for both UDP and TCP (rpcmod)

- VxFS version 3.3 (or higher) required for **POSIX** ACL's
- nfsd registers support for NFS_ACL RPC program number 100227, versions 2 and 3
- Supports ACL management from NFS **clients** (i.e. setting or viewing ACL attributes)
- ACL's are supported on both NFS **PV2** and **PV3**
- nfsstat(1M) enhanced to report ACL requests serviced
- Interoperable with **Solaris** ACL management
- **May not** interoperate with other ACL implementations (since there is no defined standard for ACL behavior)

NFS Server Logging Facility

- Provides operational logging for the NFS server
- Analyzes **RPC operations** processed by the server system
- Useful for identifying which **clients** are using server resources
- Filesystems must be **exported/shared** with logging enabled
- Each record in the log file includes:
 - Timestamp of the operation
 - IP address (or hostname if it can be resolved) of the client
 - File or directory name the operation was performed on
 - Type of operation

Example:

```
Sun Sep 21 13:11:00 2003 0 ros87252.rose.hp.com 3579
/home/dolker/testfile b _ read r 0 nfs3-tcp 0 *
```


- ✓ONC 2.3 Client-side Enhancements
 - ✓ NFS Client Kernel Improvements
 - ✓ New Version of AutoFS
 - ✓ New Version of CacheFS

• ONC 2.3 Server-side Enhancements

✓ NFS Server Kernel Improvements

> New Version of the Mount Daemon

- New Version of the Lock Manager
- New Version of NIS
- ONC 2.3 Features Available in 11i v1/v2

New Version of the Mount Daemon

- Multiple Threads of Execution
- Ability to Reject MOUNT Requests from Clients
- Supports Versions 1, 2 and 3 of the MOUNT Protocol
- Supports *nfsauth* Service
- Maintain Support for HP-specific Debug Logging Facility

Multiple rpc.mountd Threads

- A new thread will be spawned for each request
- **Maximum number** of threads can be specified via an rpc.mountd command-line option
- rpc.mountd can now service multiple mount, unmount, dump, nfsauth, etc. requests simultaneously
- Improves MOUNT **performance** on busy NFS servers
- Significantly decreases the likelihood of an rpc.mountd **outage** due to external factors (i.e. DNS, NIS, etc.)
- While a single thread of execution may block due to an unavailable resource (i.e. DNS), rpc.mountd will still be able to service new requests

Ability to Reject MOUNT Requests

- The new rpc.mountd will support a "-r" option
- Instructs the daemon to reject any new MOUNT requests from all clients
- Any clients with currently mounted NFS filesystems are not affected
- Affords the system administrator **greater control** over the server system's NFS resources

MOUNT Protocol Versions 1, 2, 3

ONC 1.2 rpc.mountd

- Supports MOUNT Protocol Versions 1 and 3, not 2
- Causes MOUNT failures with some NFS clients that won't back-off and use Version 1 when MOUNT Protocol Version 2 is not supported

ONC 2.3 rpc.mountd

• Supports MOUNT Protocol Versions 1, 2, and 3

Supports the *nfsauth* Service

- *nfsauth* is a new service that returns information to the kernel about which **authentication mechanisms** are supported for a specific exported filesystem
- Different from access checks done at filesystem **MOUNT** time these checks are done at filesystem **ACCESS** time
- The NFS server's kernel checks to see if the exported filesystem was exported with any security flavors
 - If none no *nfsauth* check is performed
 - If flavors exist the kernel opens a connection to mountd and makes an *nfsauth* call for the client, filesystem, and security flavor in question
 - If the check is **successful**, the results are **cached**
 - If the check **fails**, the NFS request is **rejected**
- The *nfsauth* cache has a **time-to-live** value of **60 minutes**

HP-specific Debug Logging Facility

- Most RPC-based daemons provide **some** debug logging
- With most daemons, the logging mechanism must be enabled at **daemon start time** via the command-line
- For those problems that occur after some period of operation, collecting meaningful data is difficult if daemons must be killed and restarted – or if logging must remain running for long periods of time

HP's SIGUSR2 Debug Logging Toggle Mechanism

- This mechanism allows the administrator to toggle debug logging on and off **without killing the daemon**
- If used properly, log file only contains **meaningful data**, thereby easing troubleshooting efforts
- Support for this mechanism will remain in rpc.mountd

- ✓ONC 2.3 Client-side Enhancements
 - ✓ NFS Client Kernel Improvements
 - ✓ New Version of AutoFS
 - ✓ New Version of CacheFS

• ONC 2.3 Server-side Enhancements

- ✓ NFS Server Kernel Improvements
- ✓ New Version of the Mount Daemon
- > New Version of the Lock Manager
- New Version of NIS
- ONC 2.3 Features Available in 11i v1/v2

New Version of the Lock Manager

- Kernel-based Implementation
- Multiple Threads of Execution
- Supports UDP and TCP Protocols
- Supports Synchronous and Asynchronous Requests
- Improved UDP/TCP Port Semantics
- Client/Server Share Lock Support
- clear_locks(1M) Command

Kernel-based Implementation

ONC 1.2 Lock Manager – Servicing File Lock Request

- 1. Client's kernel invokes KLM in response to application calling *fcntl()*
- 2. Client's KLM forwards lock request to local user-space NLM (rpc.lockd)
- 3. Client's user-space NLM sends request to server's user-space NLM
- 4. Server's user-space NLM sends request to server's kernel via fcntl() call
- 5. Server's kernel places lock on the server's local file via VOP_LOCKCTL

ONC 2.3 Lock Manager – Servicing File Lock Request

- 1. Client's kernel invokes KLM in response to application calling fcntl()
- 2. Client's KLM forwards lock request to server's KLM
- 3. Server's kernel places lock on the server's local file via VOP_LOCKCTL

fcntl() **system call**, user-space/kernel-space **context switches**, and **separate NLM/KLM** overhead for each lock request is **eliminated**

Multiple Threads of Execution

ONC 1.2 Lock Manager Design

- User-space daemon
- Single thread of execution
- Entire service blocks if a resource is unavailable (i.e. DNS)

ONC 2.3 Lock Manager Design

- User-space daemon does initialization then invokes **KLM**
- KRPC (Kernel Remote Procedure Call) layer handles thread creation for each new request and passes thread to KLM
- **Single thread** may block if a required resource is unavailable but KLM service is still available to handle new requests

Supports Both UDP and TCP Protocols

ONC 1.2 NLM/KLM

- All lock requests were sent/received via UDP
- Even NFS/TCP filesystems use UDP for lock requests

ONC 2.3 KLM

- Lock requests can be sent/received via UDP and TCP
- KLM requests are sent using the same protocol the **NFS** mount is using (i.e. NFS/UDP = UDP, NFS/TCP = TCP)
- TCP KLM connections persist for **5 minutes**

Synchronous and Asynchronous Requests

ONC 1.2 NLM/KLM

- Lock requests from HP-UX 11i v1/2 clients sent **asynchronous**
 - Client sends lock and continues processing while waiting for the reply
 - Server sends reply and continues processing waiting for new requests
- Synchronous not possible because NLM is **single-threaded**
 - One blocked request (i.e. DNS, NIS) would halt all lock processing

ONC 2.3 KLM

- HP-UX 11i v3 servers can service either synchronous or asynchronous lock requests
- HP-UX 11i v3 clients will use **synchronous** locks
- Synchronous semantics are preferable as the server uses the existing connection to send a reply rather than create a new one

Improved UDP/TCP Port Semantics

- KLM always uses "well-known" port **4045**
 - Eliminates file lock hangs caused by remote systems caching one port number and rpc.lockd registering another – lock requests are sent to the wrong port
- Client/Server port number information is cached with a configurable time-to-live value
 - Default is **5 minutes**
 - Configurable via the "-t" command-line option
 - When KLM needs to interact another system whose port cache timer has expired, **updated** port information is retrieved from the remote system's rpcbind(1M) daemon

Client/Server SHARE Lock Support

ONC 1.2 NLM/KLM Share Lock Support

- Server supports share locks from **PC** clients
- Share lock support is performed in **user** space
- No integration with share locks from HP CIFS Client filesystems
- HP-UX 11i v1/2 client **cannot** use share locks

ONC 2.3 KLM Share Lock Support

- Server supports share locks from **PC or HP-UX** 11i v3 clients
- Share lock support is performed in kernel space
- Integrated with share locks from HP CIFS Client filesystems
- HP-UX 11i v3 NFS clients **can** issue share locks

clear_locks(1M) Command

- On the rare occasion that an NFS client system crashes and **fails to clear** any locks it was holding, those locks are **unavailable** to other client applications
- clear_locks(1M) forcibly removes all file, record, and share locks created by the specified hostname
- clear_locks(1M) can be run on an NFS client (to clear locks on a remote *server*) or on a **server** (to clear locks residing on the *local system* on a client's behalf)
- Simulates a client crash recovery sequence
- clear_locks(1M) can only be run as root

✓ONC 2.3 Client-side Enhancements

- ✓ NFS Client Kernel Improvements
- ✓ New Version of AutoFS
- ✓ New Version of CacheFS

• ONC 2.3 Server-side Enhancements

- ✓ NFS Server Kernel Improvements
- ✓ New Version of the Mount Daemon
- ✓ New Version of the Lock Manager

> New Version of NIS

• ONC 2.3 Features Available in 11i v1/v2

New Version of NIS

- IPV6 Support
- Use of reserved ports
- Shadow Password Support
- DNS forwarding mode
- Multi-homed node information in hosts map
- Use of Transport Independent RPC

Agenda

✓ONC 2.3 Client-side Enhancements ✓ NFS Client Kernel Improvements ✓ New Version of AutoFS ✓ New Version of CacheFS ✓ONC 2.3 Server-side Enhancements ✓ NFS Server Kernel Improvements New Version of the Mount Daemon ✓ New Version of the Lock Manager ✓ New Version of NIS

>ONC 2.3 Features Available in 11i v1/v2

- Asynchronous I/O to Locked Files
 - Available via ONC patches for 11i v1, ships with 11i v2
- ONC 2.3 AutoFS
 - Scheduled release in 4/04 for 11i v1, ships with 11i v2
- Device IDs
 - Available at software.hp.com for 11i v1, ships with 11i v2
- clear_locks(1M)
 - Available via ONC patches for 11i v1, ships with 11i v2
- DNS Forwarding Mode in NIS
 - Available in HP's ONC 1.2 NIS implementation

